
 CODING4GIRLS
 2018-1-SI01-KA201-047013

1

O1/A6 GAME-BASED DESIGN-THINKING LEARNING FRAMEWORK FOR

ENHANCING PROGRAMMING SKILLS IN SECONDARY EDUCATION

Elaborated by University of Thessaly (Greece) and EU-Track (Italy)

 CODING4GIRLS
 2018-1-SI01-KA201-047013

2

Document Data

Deliverable: O1/A6 – Game-based Design-Thinking Learning Framework for enhancing

programming skills in secondary education

Intellectual Output No - Title: O1 – Methodological Learning Framework

Elaborated by: University of Thessaly (Greece) and EU-Track (Italy)

Disclaimer

This project has been funded by the Erasmus+ Programme of the European Union.

The information and views set out in this publication are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European Union

institutions and bodies nor any person acting on their behalf may be held responsible for

the use which may be made of the information contained therein.

All rights are reserved. Reproduction is authorized, except for commercial purposes,

provided the source is acknowledged.

Copyright © Coding4Girls, 2018-2020

Creative Commons - Attribution-NoDerivatives 4.0

International Public license (CC BY-ND 4.0)

https://creativecommons.org/licenses/by-nd/4.0/

 CODING4GIRLS
 2018-1-SI01-KA201-047013

3

TABLE OF CONTENTS

1. THE METHODOLOGY ADOPTED FOR THE LEARNING FRAMEWORK DEVELOPMENT 5

1.1 Waterfall vs Agile development methodology .. 5

1.2 Waterfall ... 5

1.3 When to use waterfall ... 6

1.4 Agile .. 7

1.6 The methodology adopted ... 10

1.7 Quick lexicon ... 10

2 SPECIFICATIONS DRAFT .. 11

2.1 The selected platform for coding ... 11

2.2 First ideas and experimentations ... 12

2.3 Second implementation ... 13

2.4 Final Implementation of the Coding4Girls platform .. 16

3 A FOCUS ON GIRLS .. 19

3.1 Girls Gaming Preferences ... 19

3.2 Approaches to Teaching Programming to Girls ... 20

3.3 Platform adaptation for girls .. 21

4 TEACHERS’ LEVELS OF INVOLVEMENT ... 22

REFERENCES ... 24

 CODING4GIRLS
 2018-1-SI01-KA201-047013

4

TABLE OF FIGURES
Figure 1: The Waterfall Model (Royce, 1987) 6

Figure 2: The Waterfall Model: iterative relationship between successive phases (Royce,

1987) 7

Figure 3: Basic differences between Agile and Waterfall methods 9

Figure 4: Snap! User Interface 11

Figure 5: Basic (left) and advanced (right) organizations of the course web-platform 12

Figure 6: Students’ view (left), Teachers’ view (right) 14

Figure 7: The C4G game gameplay 14

Figure 8: C4G game detailed gameplay 15

Figure 9: Global design 16

Figure 10: Updated gameplay loop 17

Figure 11: Meta-tags and mini-games 21

Figure 12: A lobby seen from the teachers' point of view 22

 CODING4GIRLS
 2018-1-SI01-KA201-047013

5

1. THE METHODOLOGY ADOPTED FOR THE LEARNING FRAMEWORK

DEVELOPMENT

1.1 Waterfall vs Agile development methodology

Before selecting a model, the following questions should answered (Balaji & Murugaiyan,

2012):

● How stable are the requirements?

● Who are the end users for the system?

● What is the size of the project?

● Where the project teams are located?

As a methodology for the learning environment development the so called “Agile” and

“Waterfall” methods were considered. While the Waterfall model adheres to a plan-driven

approach, Agile pursues an adaptive approach. To justify the selection of an appropriate

methodology, below the general ideas that lie behind both methods are shortly elaborated

and comparatively summarized.

1.2 Waterfall

Basically, waterfall model, also known as a Linear Sequential Life Cycle Model (Unhelkar,

2016; Weisert, 2003), is characterized by the sequential dependability on the previous

deliverable. A dependability which holds back system design when the analysis model is still

to be signed off, and holds back coding if the design is still to be signed off. In other words,

project development team only moves to the next phase of development or testing if the

previous step is completed successfully. Just like natural waterfalls where once the water

has flowed through the edge of the cliff and began flowing downwards, never turns back to

reach the top of the hill (Jhajharia, kannan, & Verma, 2014).

 CODING4GIRLS
 2018-1-SI01-KA201-047013

6

Figure 1: The Waterfall Model (Royce, 1987)

In a waterfall process, normally the documents are the output of each phase which serves

as the input to the nest phase (Balaji & Murugaiyan, 2012). Team members cannot change

the outputs that the project has certified. Nevertheless, requirements are subject to change.

Thus, there is a need for a mechanism which ensures the modifications are done in a

controlled manner without affecting the final product and its progress. Therefore, waterfall

model is likely to be unsuitable if requirements are not well understood/defined or are likely

to change in the course of the project. Authors (Petersen, Wohlin, & Baca, 2009) associate

the Waterfall model with high costs and efforts. The numbers of documents to be approved

in every phase, the difficulty to make changes, the problems that arise only in later phases

confirm this belief.

1.3 When to use waterfall

The waterfall model works appropriately where the product development mainly consists of

adding limited functionalities to an existing set functionality (Aitken & Ilango, 2013; Balaji &

Murugaiyan, 2012; Jhajharia et al., 2014). It also scales well in the cases where changes in

design can be introduced in a controlled way and the development can be continued

without the requirement of customers and competitors. However waterfall model fails

when there is so much new content or so many uncertainties to resolve that they become

inevitable.

As such, authors (Jhajharia et al., 2014) provide an example of the PC software market,

where both hardware technologies and customer requirements change very rapidly, thus

 CODING4GIRLS
 2018-1-SI01-KA201-047013

7

provoking a difficulty in capturing the specifications of a project at the very

beginning. Therefore, the development cannot occur in a linear fashion. As consequence:

“Any change in any part of the product for e.g., due to feedback from customers or

evolution in particular hardware or software technologies, or even just to add a feature that

a competitor has just introduced, may end up with pieces that no longer are compatible. ”

The testing fails. Due to the necessity of the pieces reworking much of the developed

product may seem a waste. As an alternative, a classical contribution (Royce, 1987)

discusses the iterative approaches (see Picture 2) between the preceding and succeeding

steps but rarely with the more remote steps in the sequence. This type of development in

iteration is what many developers undergo in projects in an unplanned manner (Jhajharia et

al., 2014). But, again the implementation is risky and invites failure (Royce, 1987).

Figure 2: The Waterfall Model: iterative relationship between successive phases (Royce, 1987)

1.4 Agile

Agile development is by itself a huge umbrella term that includes other agile methodologies

also, such as: Scrum, XP, Crystal, FDD and DSDM (Martin, 2002). Agile models were

specifically designed keeping the adaptability of changing requirements in mind (Jhajharia et

al., 2014). An agile method is a combination of iterative and incremental process models

with an accent towards the flexibility and the timely delivery of the software. Considering

every development process as specific and the method assumes that the existing methods

 CODING4GIRLS
 2018-1-SI01-KA201-047013

8

need to be personalized to suit best the project requirements. Agile provides

methods to assess the development and risks and also the direction throughout the

development lifecycle.

The product is developed in a series of rounds known as iterations. Each of the iteration

involves various teams working simultaneously on various areas/phases (e.g. see the

Waterfall phases). Each iteration guarantees an enhancement in features of the product of

the previous iteration and the final iteration product involves all the features demanded by

the customer (Ow, 2009).

1.5 When to use Agile

Basically, the use of Agile methodology is reasonable in the following cases. The

requirements of the software are not well specified or when the requirements are expected

to change during later phases of the development process. The condition is adequately

satisfied due to the frequency of new increments produced and, as consequence, a very low

cost of new changes implementation (Jhajharia et al., 2014).

Secondly, agile is appropriate when freedom of options and time is required by both

developers and stakeholders. In this case it is possible to leave important decisions until

more or better data are available and the project can be continued without the fear of it

being a failure (Balaji & Murugaiyan, 2012; Jhajharia et al., 2014; Martin, 2002).

To summarize, agile methodology is a practice that helps continuous iteration and

concurrency of development and testing in the software development process. Being

focused client process, agile method guarantees the continuous involvement of the clients

(students and teachers) during every stage. In addition, generally organized in this way, agile

teams are extremely motivated and self-organized which at the end provides a better result

from the development projects. The method assures that the quality of the development is

maintained. And being based on the incremental progress the approach enables the client

and team know exactly what is complete and what is not. The last consequently reduces risk

in the development process.

To conclude, below the table outlining the basic differences between Agile and Waterfall

Methods is provided (Ahmad, Soomro, & Naqvi, 2016).

 CODING4GIRLS
 2018-1-SI01-KA201-047013

9

Agile Waterfall

Separates the project development
lifecycle into sprints, following an
incremental approach.

Software development process is divided into
distinct phases following sequential design
process.

Agile methodology is known for its
flexibility, that allows changes to be made
in the project development requirements
even if the initial planning has been
completed.

Being a structured software development
methodology (SDM), most times it can be quite
rigid, so there is no scope of changing the
requirements once the project development
starts.

Can be considered as a collection of many
different projects.

Software development is completed as one
single project.

Follows an iterative development
approach, thus, planning, development,
prototyping and other software
development phases may appear more
than once.

All the project development phases like
designing, development, testing, etc. are
completed once in the Waterfall model.

Test plan is reviewed after each sprint The test plan is rarely discussed during the test
phase.

A process in which the requirements are
expected to change and evolve.

Requirements and changes are defined once
for all.

Testing is performed concurrently with
software development.

The “Testing” phase comes after the “Build”
phase

Introduces a product mindset where the
software product satisfies needs of its end
customers and changes itself as per the
customer’s demands.

Shows a project mindset and places its focus
completely on accomplishing the project.

Works exceptionally well with Time &
Materials or non-fixed funding. It may
increase stress in fixed-price scenarios.

Reduces risk in the firm fixed price contracts by
getting risk agreement at the beginning of the
process.

Prefers small but dedicated teams with a
high degree of coordination and
synchronization.

Team coordination/synchronization is very
limited.

Test team can take part in the
requirements change without problems.

It is difficult for the test to initiate any change
in requirements.

Description of project details can be
altered anytime during the system
development life cycle process (SDLC).

Detail description needs to implement
waterfall software development approach.

Team members are interchangeable, as a
result, they work faster. The projects are
managed by the entire team, so there is
no need for project managers.

The process is always straightforward so,
project manager plays an essential role during
every stage of SDLC.

Figure 3: Basic differences between Agile and Waterfall methods

 CODING4GIRLS
 2018-1-SI01-KA201-047013

10

1.6 The methodology adopted

On base of the analysis presented above the choice fell on agile methodology due to the

following reasons:

1. The requirements and functions are subject to change

2. The product needs to be developed in a limited time.

3. A quick prototype with only certain functionalities is needed before the final product

is available.

4. Agile requires the active participation of stakeholders.

5. The previewed work of the team is highly collaborative and self-organizing. The last

ensures that the team members are actively planning and estimating their own

work.

1.7 Quick lexicon

The abbreviation C4G and the full name Coding4Girls are used indifferently in this

document.

A Lobby represents a course for a teacher. For example if a teacher wants to do a course

about Elements of Programming, it means they will need to create a lobby Elements of

Programming in the C4G software.

A Challenge corresponds to a chapter of the course; it is a subdivision of a lobby. If we

continue our last example about a course concerning Elements of Programming, then

elements of the course concerning conditional statements or loops or conditional loops

would each be part of their own challenge.

An exercise or level corresponds to an elemental decomposition of a chapter of a course. If

we continue our last example, asking the students to write a certain conditional statement

would be an exercise in the challenge about conditional statements in the lobby titled

Elements of Programming.

 CODING4GIRLS
 2018-1-SI01-KA201-047013

11

2 SPECIFICATIONS DRAFT

2.1 The selected platform for coding

As the platform for Coding Snap! (Fig 4) was chosen. The platform is an HTML/Javascript

evolution of the proven and ubiquitous Scratch with some additional features. Snap!,

similarly to Scratch, is web-based, but also has the possibility to be run offline through a

browser.

Apart from the features of Scratch, Snap! adds first class lists, first class procedures, first

class sprites, first class costumes, first class sounds and first class continuations, thus making

it more suitable for older audiences and as an introduction to computer science than

Scratch. Snap! is available in over 40 languages, including Bulgarian, Croatian, English,

Greek, Italian, Portuguese, Slovenian and Turkish.

Figure 4: Snap! User Interface

A study was conducted by Weintrop and Wilensky (2015) with high school students using

Snap! and Java. The students found the blocks-based approach to be easier than Java – thus,

it is in accordance with the view that blocks-based programming (like Scratch and Snap!) is

more accessible to novice programmers. According to the study findings, this was due to the

fact that blocks are easier to read, due to the visual nature of the blocks that provide cues

on how they can be used, they are easier to compose, and serve as memory aids. (Weintrop

& Wilensky, 2015).

 CODING4GIRLS
 2018-1-SI01-KA201-047013

12

2.2 First ideas and experimentations

Following the Agile methodology a first version of the platform was very quickly designed

and implemented in order to test the implementation of the specifications.

A platform hosting the course was organized and designed, in many instances drawing on

the concept of a Learning Management System (LMS), which will follow and motivate the

students’ progress in programming and also will be furnished by the instruments to manage

the courses. There are six major indicators, constituting the concept of LMS itself that

caused the selection of this type of platform organization: interoperability, accessibility,

reusability, durability, maintenance ability and adaptability (Long, 2004).

At the current stage of development two options for course web-platform organization

were considered: basic and advanced (see Fig 4). The basic option was to have a full LMS

style implementation for the project, with Snap! exercises illustrating the points of the

course, the more advanced option was making use of 3D games inside the LMS via a WebGL

implementation of games developed in Unity.

Figure 5: Basic (left) and advanced (right) organizations of the course web-platform

The general underlying principles of the educational platform were the following:

1. The platform is supposed to be fully Web-based for teachers and students

2. Constant internet connection is required;

3. The platform contains both students/teachers accounts and holds the work to be

done;

 CODING4GIRLS
 2018-1-SI01-KA201-047013

13

4. Work (coding exercises) are opened by the students via a code given by the

teacher (basic modality);

5. Exercises/challenges are chained together thematically; for as long as pedagogically

needed;

6. Unity WebGL game, integrated to the platform unlocks exercises/hints according to

player progression can be divided in chapters according to the work plan chapters;

7. Gatekeeping the coding with the game;

8. The narrative of the game corresponds to the text given by the teacher;

The first testing of the solution showed some flaw with the design. The WebGL component,

although very attractive as it immersed students in a 3D environment was also very hungry

of computer resource which led to issues performance-wise especially given the variety of

available browser for end users. Furthermore, the volume of data to be downloaded at each

use was excessive. Quickly an improved version of this design was drafted.

2.3 Second implementation

The main change of this implementation was to completely separate the students’ and

teachers’ implementation. Teachers would only deal with the online platform; students

would only play with a desktop Unity game.

From the student’s point of view (Fig 5) the interaction principle with the platform is

contained within the following basic steps:

1. Log in to the Coding4Girls game;

2. Get acquainted with the tasks in a LMS style environment;

3. Basic option: coding exercises are opened by the students via a code given by the

teacher.

4. Advanced option: play the game to unlock instructions/hints;

5. Code using Snap!

As one can see (Fig 5), due to the organizational principles chosen the permanent

internet connection is required to provide to continuous communication with Coding4

Girls Server.

 CODING4GIRLS
 2018-1-SI01-KA201-047013

14

Whereas teacher’s interaction, as one can see from Fig 5, consists in Log in to the

Coding4 Girls Server and work with either courses access/creation or student

management (e.g. assignments, analytics).

Figure 6: Students’ view (left), Teachers’ view (right)

The Coding4Girls game would start with the students arriving in a room where they would

login to a server. From there, their progress and all personal information would be

transferred t the game. They would then proceed to a room full of portals, each of them

corresponding to a game lobby, as shown in Fig 7 and Fig 8.

Figure 7: The C4G game gameplay

 CODING4GIRLS
 2018-1-SI01-KA201-047013

15

Once the students have chosen their lobby, they can choose the challenge inside

the lobby corresponding to their progression in the course and start the game. They will be

propelled into a 3D universe in which they will need to solve puzzles or play some games to

unlock the access to an instance of Snap! where they will do the required coding.

Figure 8: C4G game detailed gameplay

The general underlying principles of the educational platform were the following:

1. The platform is supposed to be fully Web-based for teachers, but for the students

the solution will be fully desktop;

2. Constant internet connection is required;

3. The platform contains both students/teachers accounts and holds the work to be

done;

4. Work (coding exercises) are opened by the students via a code given by the teacher

(basic modality);

5. Exercises/challenges are chained together thematically; for as long as pedagogically

needed;

6. Unity desktop game, integrated to the platform unlocks exercises/hints according to

player progression can be divided in chapters according to the work plan chapters;

 CODING4GIRLS
 2018-1-SI01-KA201-047013

16

7. Gatekeeping the coding with the game;

8. The narrative of the game corresponds to the text given by the teacher;

9. All in one integrated game for the students, no other interface than the game;

10. The assignments of existing games/puzzles/universes take place automatically

according to students’ progress.

11. Download once use forever model will be adopted.

2.4 Final Implementation of the Coding4Girls platform

When the second implementation was presented to the partners, a lot of feedback was

gathered and a new and improved design (Fig 9) was created. This new design added to the

previous one two main key points:

● Framing the process into a design thinking methodology

● Strongly linking the 3D games and puzzles to the content of the course

In order to integrate the C4G platform into a design thinking pattern, it was decided that at

the beginning of each lobby, all the students of a class would be given a certain real life

problem, inside the game. All the students would then exchange ideas about the problem,

what they understand of it and how they think they could solve the issue via a shared space

in which they can place multimedia message via virtual post-its.

 CODING4GIRLS
 2018-1-SI01-KA201-047013

17

Figure 9: Global design

Once this brainstorming phase is achieved, each of the students would then start the loop of

challenges and Snap! Exercises described before, where all of them are geared toward

illustrating concepts necessary to solve the overarching real life problem given to everyone.

The loop (see Fig 10) can be decomposed as such:

● The student gets selects where they are in the lobby progression wise and jump to

the corresponding challenge

● The students are put into a 3D world where they will play a certain game,

thematically linked to current elements of courses. This step is optional.

● After playing the game, the students are shown some course principle expanding on

what the game showed them and given some instructions through an HTML page

containing multimedia content.

● The students are given a Snap! Interface where they need to solve the given exercise

or elaborate on already existing snippets of code

● The students go to the next challenge/chapter of the course

● Once the entire course has been done, students go back to the original problem at

hand and will code a solution for it

● The students will be able to see all the other solutions elaborated by their class

comrades and compare it to their own.

 CODING4GIRLS
 2018-1-SI01-KA201-047013

18

Figure 10: Updated gameplay loop

 CODING4GIRLS
 2018-1-SI01-KA201-047013

19

3 A FOCUS ON GIRLS

3.1 Girls Gaming Preferences

Serious games are games that aren’t meant only for entertainment purposes, but also for

education purposes: to engage, educate, and motivate students in the learning process.

However, the degree in which one wants to play a game varies across gender and the

gaming industry has made few attempts at studying female-preferred games (Alserri, Zin, &

Wook, 2018).

According to the “Gamer Consumer Insights”, 46% of gamers across thirteen countries are

women, showcasing a growing trend in which women have been becoming more interested

in gaming. Likewise, interest in gaming and its connection with gender issues has increased

rapidly in recent years. While across all platforms, men tend to prefer strategy, sports,

action/adventure, and shooter games, women tend to enjoy more action/adventure, puzzle,

strategy and arcade games (Osborn, 2017).

Women tend to not be fond of direct competition (conflict or unjust violence settings) and

prefer problem resolution (Vermeulen, Looy, Courtois, & Grove, 2011). There is also a

preference for puzzle games, social games (with a rewarding system), collaborative and

exploration games, and virtual life and party games. In regard to adventure games, there is a

preference for observing first and playing after the act of observation (Alserri et al., 2018).

It’s also important to note the difference in preferences when it comes to platforms: while

men prefer to play on the PC or the console (48% and 37%), only 35% and 23% of the

women inquired prefer to do so, with this last group playing more mobile games (48%)

(Osborn, 2017).

 CODING4GIRLS
 2018-1-SI01-KA201-047013

20

3.2 Approaches to Teaching Programming to Girls

Adopting a constructionist approach to games is beneficial for education, because there is

not only a focus on providing the game to students, but also providing this group with

means and knowledge to develop their own games (Kafai, 2006).

A study conducted by Carmichael (2008) showcases the beneficial outcomes of combining

computer science concepts with video games specifically to a young female target-group.

The goal of the one-week course towards twelve girls in grades eight and nine was to teach

basic concepts on Computer Science and also to disperse negative stereotypes associated

with it. One crucial point to bear in mind when choosing the coding creation software is that

educators should conform to a series of requirements: the academic year of the students,

familiarity of the instructor(s) and capability of the student in creating a coding project

according to the amount of time they will be spending learning the know-how to do it. Some

teaching methods used ranged from group activities, brainstorming, reading of relevant

articles to interactive demonstrations. An important aspect that Carmichael (2008)

emphasizes is that during lab time, more than one instructor would’ve been helpful to, in

turn, help all the girls with their doubts about the gaming development phase.

Lastly, Alserri et al. (2018) have developed a conceptual model for gender-based

engagement in Serious Games, consisting of five elements:

1) Learning Elements: these are the elements that distinguish entertainment games

from educational games (Alserri et al., 2018);

2) Female Preferences for digital games: these are the preferences specific to girls, that

have to be incorporated into the design in order to motivate and engage them.

According to the literature review conducted by the author, these preferences

consist in exploration, character customization, storyline, social interaction,

collaboration, challenges, fun, control and feedback (Alserri et al., 2018);

3) Flow state theory: some of these elements are also female preference elements.

These elements should also be incorporated in order to obtain engagement and

motivation: challenges, fun, control, feedback, concentration, clear goals, skill and

immersion (Alserri et al., 2018);

 CODING4GIRLS
 2018-1-SI01-KA201-047013

21

4) Female game types and genres: according to the authors, these would be fantasy

and role-playing games.

5) Social gender factors: parental, peers and teacher influence.

3.3 Platform adaptation for girls

In accordance with Girls Gaming preferences elaborated earlier, in particular, such as

action/adventure, puzzle, strategy and arcade games (Osborn, 2017) the games genres

used will be adapted correspondingly. Following the adaptation strategy, games will be

focused more on the problem solving than on the enforced/violent resolution.

The study paths are supposed to be entirely translated into game format, thus the content

is believed to become more appealing. According with the recent findings (Hosein, 2019),

13-14 year old girls classed as 'heavy gamers' - those playing over nine hours a week - were

three times more likely to pursue a PSTEM degree compared to girls who were non-gamers,

the coding part is placed inside a video game.

No avatars and built-in multi-players components are foreseen. Nevertheless, strategy

allows the work of the players in teams for Snap! part.

 CODING4GIRLS
 2018-1-SI01-KA201-047013

22

4 TEACHERS’ LEVELS OF INVOLVEMENT

The platform will offer to the teachers a high level of involvement into the customization of

the students’ experience.

In order for the teachers to be able to illustrate their courses concepts in the game, it was

decided to create a list of keywords, called meta-tags which would link existing coding

concepts with the available library of 3D games.

Figure 11: Meta-tags and mini-games

Those meta-tags will allow the teachers to create a lobby/lesson seamlessly as they will only

select the relevant meta-tags linked to their course and the C4G platform will automatically

transform those into a certain game which will then be offered to the students.

For example if a teacher creates a lobby which will present a course about the concept of

data type and data structure, they will only have to select the data type meta-tag in the

authoring tool. The students will then automatically be given to play a game related to this

concept, one where they need to fill an inventory by combining colored marbles.

In the scope of this project a limited amount of meta-tags and 3D games will be produced

(see Fig 11 for the full ist), corresponding to all the basic notion of coding with Snap!. But

 CODING4GIRLS
 2018-1-SI01-KA201-047013

23

the list of met-tags and corresponding mini-games could be extended infinitely

without any issue.

From the teachers point of view, the lesson (or lobby) will be seen (see Fig 12) as a list of

chapters (or challenges) linked the one to the other, each of them illustrated by a meta-tag

and each containing detailed instructions and illustrations for the students given through an

HTML page.

Figure 12: A lobby seen from the teachers' point of view

 CODING4GIRLS
 2018-1-SI01-KA201-047013

24

REFERENCES

Ahmad, G., Soomro, T., & Naqvi, S. M. (2016). AN OVERVIEW: MERITS OF AGILE PROJECT
MANAGEMENT OVER TRADITIONAL PROJECT MANAGEMENT IN SOFTWARE
DEVELOPMENT (Vol. 10).

Aitken, A., & Ilango, V. (2013). A comparative analysis of traditional software engineering
and agile software development. Paper presented at the 2013 46th Hawaii
International Conference on System Sciences.

Alserri, S. A., Zin, N. A. M., & Wook, T. S. M. T. (2018). Gender-based Engagement Model for
Serious Games. International Journal on Advanced Science, Engineering and
Information Technology, 8(4), 1350-1357. doi: 10.18517/ijaseit.8.4.6490

Balaji, S., & Murugaiyan, M. S. (2012). Waterfall vs. V-Model vs. Agile: A comparative study
on SDLC. International Journal of Information Technology and Business
Management, 2(1), 26-30.

Carmichael, G. (2008). Girls, computer science, and games. ACM SIGCSE Bulletin, 40(4), 107-
110. doi: 10.1145/1473195.1473233

Hosein, A. (2019). Girls' video gaming behaviour and undergraduate degree selection: A
secondary data analysis approach. Computers in Human Behavior, 91, 226-235. doi:
https://doi.org/10.1016/j.chb.2018.10.001

Jhajharia, S., kannan, v., & Verma, S. (2014). Agile vs waterfall: A Comparative Analysis (Vol.
3).

Kafai, Y. B. (2006). Playing and Making Games for Learning: Instructionist and
Constructionist Perspectives for Game Studies. Games and Culture, 1(1), 36-40. doi:
10.1177/1555412005281767

Long, P. D. (2004). Encyclopedia of Distributed Learning. Thousand Oaks
Thousand Oaks, California: SAGE Publications, Inc.
Martin, R. C. (2002). Agile software development: principles, patterns, and practices:

Prentice Hall.
Osborn, G. (2017). Male and Female Gamers: How Their Similarities and Differences Shape

the Games Market., from https://newzoo.com/insights/articles/male-and-female-
gamers-how-their-similarities-and-differences-shape-the-games-market/

Ow, S. (2009). Review of Agile Methodologies in Software Development (Vol. 1).
Peteranetz, M. S., Flanigan, A. E., Shell, D. F., & Soh, L. K. (2017). Computational Creativity

Exercises: An Avenue for Promoting Learning in Computer Science. Ieee Transactions
on Education, 60(4), 305-313. doi: 10.1109/te.2017.2705152

Petersen, K., Wohlin, C., & Baca, D. (2009). The waterfall model in large-scale development.
Paper presented at the International Conference on Product-Focused Software
Process Improvement.

Royce, W. W. (1987). Managing the development of large software systems: concepts and
techniques. Paper presented at the Proceedings of the 9th international conference
on Software Engineering.

Unhelkar, B. (2016). The art of agile practice: A composite approach for projects and
organizations: Auerbach Publications.

 CODING4GIRLS
 2018-1-SI01-KA201-047013

25

Vermeulen, L., Looy, J. V., Courtois, C., & Grove, F. D. (2011). Girls will be girls : a
study into differences in game design preferences across gender and player types.
Paper presented at the Under the mask: perspectives on the gamer, Luton, UK.
http://hdl.handle.net/1854/LU-1886961

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students'
perceptions of blocks-based programming. Paper presented at the Proceedings of
the 14th International Conference on Interaction Design and Children, Boston,
Massachusetts.

Weisert, C. (2003). There’s no such thing as the Waterfall Approach!(and there never was)’.
Information Disciplines, Inc.

http://hdl.handle.net/1854/LU-1886961

