

O3 – Instructional Support Content

INSTRUCTIONS FOR STUDENTS:

APPENDIX TO O3-A1 (COLLECTION OF GAME DESIGN BASED LEARNING SHEETS

TARGETING TEACHERS)

 2

Document Data

Deliverable: Instruction for students: Appendix to O3-A1 (Collection of game design based
learning sheets targeting teachers)
Partners involved: University of Ljubljana (Slovenia)

Disclaimer
This project has been funded by the Erasmus+ Programme of the European Union.
The information and views set out in this publication are those of the author(s) and do not
necessarily reflect the official opinion of the European Union. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the
use which may be made of the information contained therein.
 Coding4Girls, 2018-2020

Creative Commons Attribution-ShareAlike 4.0
International Public License (CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0/

 3

Table of contents

Scenario 1 - Introduction to Snap! interface ... 4

Scenario 2 - Time to bring your sprite to life ... 10

Scenario 3 – Moving around the stage .. 13

Scenario 4 – Changing costumes and turning .. 15

Scenario 5 – Sounds of the farm .. 18

Scenario 6 – Chameleon’s summer vacation ... 19

Scenario 7 – Helping Prince and Princess to find their animals .. 22

Scenario 8 – Drawing with a chalk ... 24

Scenario 9 – Picking up trash and cleaning the park ... 27

Scenario 10 – Feeding the cats .. 30

Scenario 11 – Guessing the number of cats in a shelter ... 33

Scenario 12 – Catching healthy food ... 35

Scenario 13 – Storytelling .. 37

Scenario 14 – Improve the Climate.. 41

Scenario 15 – Catch the mouse ... 43

Scenario 16 – Buying food for a picnic ... 45

Scenario 17 – Operations ... 47

Scenario 18 – Recycling .. 49

Scenario 19.1 – Play a Piano .. 50

Scenario 19.2 – Play a Piano .. 52

Scenario 20 – Test .. 54

Scenario 21 – Simplified PacMan ... 55

 4

Scenario 1 - Introduction to Snap! interface
When you start Snap! you see the following interface:

We will look into different parts of interface step by step, starting with the right side of the
window.
On the right side we can find a stage with a sprite on it. In the beginning the stage is plain
white and the default sprite is a Turtle in shape of an arrow.

Task 1: Create a new sprite
To create a new sprite you will have three options: to add a new Turtle sprite (arrow icon), to
paint a new sprite (paintbrush icon) or to take a camera screenshot and import it as a new
sprite (camera icon). You can find these icons just under the stage as shown in picture.

At the moment you would like to paint a new sprite, therefore click on the paintbrush icon.
When you click it, the following paint editor opens:

 5

As you can see, the paint editor has an option of freehand drawing, drawing a straight line,
drawing a rectangle or a circle (which can be filled with colour or not), erasing, filling a region,
picking up a colour anywhere on the screen. Try it out and create your own sprite.

When you are done drawing use a special feature that enables you to set the rotation
centre of your sprite. If needed move it so take it is not outside of your sprite:

 →
Click OK to save it.
If you still have to edit your sprite, make sure your sprite is chosen.

Then click on the Costumes tab below the sprite name, right-click on the costume you want
to edit and chose edit to reopen the paint editor with your costume.

 6

Every sprite can have one or more costumes. You can add a new one by clicking on a
paintbrush icon to draw a new one or right-click an existing one and choose duplicate and
then edit it for changes.
Costumes can also be exported if you need them in another project.
If you are not so much into drawing, you can import a costume by drag-and-dropping an
existing picture from your hard drive to the Snap! or choosing a costume from existing ones.
For the later you click on the icon that looks like a piece of paper, and choose Costumes… as
shown on the picture.

This opens a window with different costumes to choose from and import into your program.

 7

To delete a costume, right-click on it and choose delete. If you want to delete a sprite, right-
click on it and choose delete.

 8

Task 2: Create a stage background
To edit or add a new a background, you first have to click on the Stage and select Background
tab.

To draw a new background, choose the paintbrush and the Pint editor opens. You can now
draw your own background. Don’t forget to click OK when you finish.
To import an existing background drag-and-drop it into Snap! or click on the icon that looks
like a piece of paper, and choose Backgrounds…

This opens another window with existing backgrounds.

 9

Editing backgrounds is similar to editing sprites: you right-click on it and choose edit.

 10

Scenario 2 - Time to bring your sprite to life
You have a dog and you want it to move. To make it move, you need to write your first
program.
Look at the leftmost side of the interface. There you will find different blocks, which are
divided into several categories: Motion, Looks, Sounds, Pen, Control, Sensing, Operations, and
Variables.

These blocks are colour-coded, which means that for example all the motion blocks are
written on blue blocks.
To make your dog move forward, you first have to drag-and-drop the blocks from the left part
of the interface to the Scripts section:

If you now double-click the block, the dog will move for 10 steps.
You probably don’t want to double-click the blocks all the time, therefore click on Control

category and drag-and-drop into the Scripts section:

These blocks work as bricks, which means that you can be put together to build a sequence

of commands. If for example you put together , your dog will wait for you to
click on green flag on top of the stage and will then move 10 steps. You can change the
number of steps dog makes by simply writing a different number in the white space provided.
Try it out!

 11

Barking
If you want your dog to bark like in comics, you have to click on Looks category and choose

. Drag-and-drop this blocks to your scripts and add it to the code you
have already put together, and replace “Hello!” with “Woof woof!”

Now click on the green flag (circled with red) and this should happen:

→
When you click on the green flag, the dog moves 50 steps, and says “Woof woof!”
Try to write a program that will lead your dog from the left part of the stage to the doghouse
on the right side of the stage and bark after every move. When it reaches the house, it barks
“I’m home”. Use blocks:

Tip 1: you can move your dog to a selected position on stage by drag-and-dropping it
Tip 2: If you want your dog to start on the same position every single time you click on green

flag, use . You can choose your own x and y position by writing a
different number in the white spaces.
Possible solution:

 12

 13

Scenario 3 – Moving around the stage

[Task 1]

1) Open Catch_the_Ball and add code to the dog so that it catches the ball. With this
you will create an animation, where you will see how the dog moves.

2) Use and blocks to make an animation.

3) With click on green flag dog is moved to the starting position with

4) When you finish, don’t forget to save the program.

Catch the Ball:
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_
Catch_the_ball

[Task 2]

1) Open Help monkey climb the tree add code to the monkey to fetch the bananas.

2) Use and to make an animation of a monkey climbing
on a palm tree.

3) Move monkey to starting position.

4) When monkey reaches bananas, it shall climb back to the starting point. The

movement should look like an animation.

5) When you finish, don’t forget to save the program.

Help monkey climb the tree:
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_
Help_monkey_climb_the_tree

https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_Catch_the_ball
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_Catch_the_ball
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_Help_monkey_climb_the_tree
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_Help_monkey_climb_the_tree

 14

[Task 3]
In both tasks you had to interchangeably use two blocks. How many times did you have to
repeat the code?
There is a shorter way of writing this code by telling the computer to repeat your code a given
number of times.

1) Find a suitable block of code, that enables you to repeat the code.
2) Update your code for the monkey with the block you have found.

a. Make a code for monkey to climb up the tree
b. Make a code for monkey to climb down form a tree (to the starting position)

3) Update the code for the dog
a. Make a code for the dog to run to the ball
b. Make a code for the dog to return
c. Additionally: try to figure out how to turn the dog around, so it doesn’t run

backwards

The picture below shows the stage.
For moving left/right you move in x direction (right 🡪 +, left 🡪 -)
For moving up/down you move in y direction (up 🡪 +, down 🡪 -)

Remark:
For moving right or up, you
never write the + sign in front of
the number, e.g. it is not +240, it
is just 240.
Picture : XY Grid Background to help
you with moving in x and y direction

 15

Scenario 4 – Changing costumes and turning

[Task 1]
1) Open a new empty project, click on icon that looks like a white piece of paper, and select

Costumes…
2) Click on ballerina a, and click on Import. Do the same with ballerina b, ballerina c, and

ballerina d. Then click Cancel

In Costumes tab of your sprite, you now have 4 ballerina
costumes.

You can rename Sprite to Ballerina, by changing the text above
the Costumes tab.

3) Now go back to Scripts tab and try to create a code,
that:
a. will start when the green flag is clicked
b. our ballerina will dance so that she will change her

appearance 15 times. Use and .
c. Character ends her dance by changing appearance to
ballerina a.

 16

[Task 2]
a. Open a new empty project. Repeat all the steps from [Task 1], except that you

import avery walking a. As before add also costumes avery walking b, avery walking
c and avery walking d.

b. Add a suitable background for Avery to walk on, so that in animation it will seem as if
Avery is walking from left side of the stage to the right side of the stage.

c. Create an animation of Avery walking. The code includes:
a. Start when green flag is pressed
b. Starting position
c. 14x repeating the change of costumes. Don’t forget to add wait _ secs block

to see the animation.
d. The girl is now walking on spot. Punca sedaj hodi na mestu. Try to figure out,

how to animate Avery in a way, that her steps will look connected as in real
life and she will move from left to right.

[Task 3]
1) Open a file Find cheese.
2) Until now, you always wrote a program where a sprite only moved in one direction. In

this task, you will have to turn the mouse, in order to reach the cheese. To make her
turn, you can either choose:
a. where you tell the mouse in which direction she

has to point or

b. you can tell her to turn for a certain angle clockwise or counter

clockwise .
A full circle has 360 degrees, so if you want to turn in the opposite direction from
where you are now, you turn for 180 degrees. If you want to turn to your left you
turn 90 degrees counter clockwise. If want to turn to your right you turn 90 degrees
clockwise.

3) Write a program that mouse has to follow to reach the cheese if she has to walk only on
the green area
a. Use the following blocks:

 17

b. Now try to write a program using and
with 90 degrees.

4) As you have seen, the mouse has turned in different directions to reach the cheese.

Sometimes you don’t want your sprite to turn upside down, but to just turn to the left or
to the right so it doesn’t walk on its head. To make sure your sprite turns like you want it
to, you have to click on appropriate icon left of your sprite:

a. The circular arrow means, that your sprite can turn in any direction (like your
mouse)

b. The left-right arrow means that your spirit will only turn to the left or to the
right (this is what you would use for the dog not to walk on its head

c. The right arrow means that the sprite will always look as it is (you could use
this for the monkey)

c. Try to rewrite your programs for the dog and the monkey so that they first go the
object and back by turning. Make sure you change their rotation style properly.

Find cheese:
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_
Find_cheese

https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_Find_cheese
https://snap.berkeley.edu/snap/snap.html#present:Username=spelac&ProjectName=C4G_Find_cheese

 18

Scenario 5 – Sounds of the farm

1. First you have to open the Sounds of the Farm program. In it you find a program
template with background and the main character – the woman farmer.

2. There are different animals on the farm that are advertised under certain conditions.

How the animals advertise tells us the woman farmer. Now you have to program
the woman farmer to tell the instructions: “If you want to hear the dog, click on
the key "D"!”.

You have to do the same for other farm animals.

TIP: Help yourself with the block .

3. If you want animals on the farm to be advertised, you need to add sound to them.
Now you have to add a sound from the sound library and program the sound of the dog

which will be played when the key “D” is pressed.

TIP: Help yourself with the blocks and .

4. You have to import sounds to other animals and give them a similar code as in Task

3.
TIP: You can import sounds by dragging them to the Sounds tab. Help yourself with blocks from Task 3.

5. Next step is to program the woman farmer’s welcome greeting. When player start
the game the woman farmer has to say: “Welcome to my farm”. First, you have to
record the woman farmer’s welcome greeting and than you have to add the sound
in woman farmer’s scripts.

TIP: You can record sound by clicking the red button on the Sounds tab.

[ADDITIONAL TASK]
You can upgrade the farm as you like by adding new sprites (farmer, hen, tractor, ...) and
sounds.
WHEN YOU FINISH, SAVE THE PROGRAM!
Sounds of the Farm:
https://snap.berkeley.edu/project?user=tadeja&project=Sounds%20of%20the%20farm_0

https://snap.berkeley.edu/project?user=tadeja&project=Sounds%20of%20the%20farm_0

 19

Scenario 6 – Chameleon’s summer vacation

Task: Create a game where the player will be able to move the main character - chameleon around
the screen with arrow keys. Chameleon will change its looks (costumes) based on the color of the
background. Background is divided in three parts with uniform color, each representing a different
place: blue represents the sea, sandy color for the beach and green for the forest.

Chameleon has to change its looks and also tell where he is in five different situations:
1) when swimming in the sea, he has to change his color to blue and say “I am swimming in the sea”;
2) when he is between the sea and the beach his skin turns half blue-half sandy color and he says “I
am between the sea and the beach”;
3) on the beach, he takes on a sandy color and says “I am relaxing at the beach”;
4) between the beach and the forest, he turns half green-half sandy color and says “I am between the
beach and the forest”;
5) in the forest, his skin turns green and he says “I am cooling off in the tree shade”;

The process of creating the game:

1. Open the template file:
https://snap.berkeley.edu/project?user=zapusek&project=chameleon_template

There is a background divided into three unicolor parts. You will also find five different looks
for a chameleon. You can optionally place on a background other items to make a scene more
realistic, such as: waves, sea shells, trees… You have to be careful not to choose items that are
entirely different color than background and are at the same time bigger than the chameleon.
In this case the sensing block won’t be able to correctly detect the color of the background if
the player will place chameleon there.

2. Write a code for moving the chameleon with arrow keys (up, down, left, right). Set his step

length to 10 pixels. Remember to rotate him in the appropriate direction before each step.

Chameleon should not move over the edge of the screen so use the block
to make him bounce back.

3. Chameleon changes his looks according to the color of the background at his current position.
We can move him freely across the screen, so it is impossible to predict his position
beforehand. This is the reason why we have to check his position repeatedly. In this kind of
situation where we have to constantly check if something has happened we use a forever
loop.

4. What are the possible locations of the chameleon on the screen? We noticed there are five:

https://snap.berkeley.edu/project?user=zapusek&project=chameleon_template

 20

a. he is entirely on the blue color
b. he is entirely on the sandy color
c. he is entirely on the green color
d. he is partly on the blue color and partly on the sandy color
e. he is partly on the sandy color and partly on the green color

5. In Snap! we have a special block that tells us what color the object is currently touching. We

can find it in the Sensing group: .

6. This block gives us data about whether it’s: true or false that object is touching a specified
color. We can specify a color by clicking on a little square and then select a color. We can
choose it from a color palette or by clicking on a part of the screen with desired color.

Below is the example showing us how to get data: true or false from a sensing block if object
is touching the sandy color:

7. Block is not a command block. It represents a logical expression that can be
put into a control block. Control blocks execute other blocks (that we put in their body) only
if the value of the logical expression (in their head) is true and don’t do anything if the value
is false. Examples of control blocks are: if block, repeat until loop and event “When”. In our
case we will have to use if control block.

8. Combine blocks below to check if the chameleon is touching the sandy color. In that case

switch to a sandy chameleon look:

9. Now you can use similar blocks and then combine all of them together to also check the other

two conditions: if the chameleon is touching blue and green color.

 21

10. Remember! If there are multiple if blocks with fulfilled condition in a sequence, only the
commands of the last one will have the effect in the game. Use that knowledge when creating
the code.

11. Now we have to take into consideration other two cases that can happen in game, that is
when chameleon is touching two colors of the background at the same time. If you want to
check if multiple conditions are true at the same time you have to combine them using a
logical operator “and”. You can find logical operators in the “Operators” group.

12. Combine two blocks for sensing color: 2x , logical operator: and

, if block: and block for switching costumes: to
implement detecting those additional cases.

13. Complete the game with the use of block to program a chameleon to say on which
part of the screen is he currently positioned.

Chameleon summer vacation: https://snap.berkeley.edu/project?user=zapusek&project=chameleon

https://snap.berkeley.edu/project?user=zapusek&project=chameleon

 22

Scenario 7 – Helping Prince and Princess to find their animals

1) Open the program Helping Prince and
Princess to find their animals. You will
add sprites, write a code for the girl's
movement and drawing a path.

2) Create 4 new sprites (a Prince, a Princess
and eg. a dog and a cat). Reduce the
sprites' size by using this block

.
The sprites have to be small enough to
move inside the maze (as shown in the
picture).
Put the sprites in the desidered position in the maze.

3) Now you will write a code for girl's movement with the keys. You already have the
code for moving with the right arrow. Write a code for moving in other three
directions.

4) The girl can only move along the path, so you have to stop her from stepping on the
grass. Think about how will you do this.

5) Now you will write a code for drawing with a pen.
Use these blocks:

Then move the girl around the maze and you wll see what happens.

6) The player will have to connect a Princess and her cat with one color and a Prince
and his dog with another color. Think about how will you do this.

7) In the last step you have to think how will the game begin. What will happen when
the green flag is clicked?

a. The girl will move to her starting position.
b. Then player who will play the game does not know that he has to draw a path

from a Princess to her cat with one color and from a Prince to his dog with
another color and that the paths must not cross. Write the instructions that
will tell all this.
Make sure that the player has enough time to read the instructions.

c. When creating a game, we should always test it and look for possible errors.
Repeatedly start the game by clicking on the green flag and see if everything
works as it should.

d. If/when you find out that something is missing in the code, think about what
the next blocks do and where you need to put them.

 23

[Additional tasks]

You can add additional tasks according to your wishes or follow the tasks below:

● Set starting coordinates for the Prince and the Princess and write a code for their
movement. Set the appropriate size for them. They should draw a path to their
animals.

● Add another sprite (animal) for the girl.
● Each sprite should draw with a different color.
● Adjust the initial instructions.
● Add instructions for moving a sprite and drawing by clicking a sprite. E.g. the Princess

says: “You move me with pressing the keys W, S, A and D. I draw the path by pressing
the key 3. I stop drawing by pressing the key 4. Help me to find my cat!”

Helping Prince and Princess to find their animals:
https://snap.berkeley.edu/project?user=mateja&project=Helping%20Prince%20and%20Prin
cess%20to%20find%20their%20animals%20-%20Part

https://snap.berkeley.edu/project?user=mateja&project=Helping%20Prince%20and%20Princess%20to%20find%20their%20animals%20-%20Part
https://snap.berkeley.edu/project?user=mateja&project=Helping%20Prince%20and%20Princess%20to%20find%20their%20animals%20-%20Part

 24

Scenario 8 – Drawing with a chalk

[Task 1]

1) Open Drawing with a chalk and write a code so that the
chalk will draw a square by pressing the »S« key.

2) The chalk has to connect the vertex A and B, B and C, C and
D and D and A.
Hint: The distance between A and B is 150 steps.
 Every angle of a square is 90°.

 Use so you can see the chalk's
movement.
If the steps are repeated, use the loop repeat.

3) Before using the loop, we have to add a following code:
a. Set pen color.
b. Set starting coordinates for the chalk in vertex A (x: -80, y: -105).
c. Put the pen down.

Consider whether it makes sense so use blocks pen up and clear as in the previous
activity and where to put them.

Why is good to use the block ?

[Task 2]
1) In this task you will write a code for drawing a rectangle. Firstly, you will have to

change a background.

Clicking on »board« (left picture)
you open backgrounds.

Clicking on »Backrgounds« (right picture) you can
see 3 prepared backgrounds for this activity:

boardSquare, boardRectangle and boardT.

 25

2) For writing a code click on Scripts.

 We want switch the background to boardRectangle by pressing the key “R”.

 Use blocks and .

Do the same for switching backgrounds to boardSquare with the key “S” and to
boardT with the key “T”.

3) By clicking on the Chalk you go back to writing code for the chalk.

You have to add one more block of code to the [Task 1].

You already wrote a code for switching to boardRectangle by
pressing the key “R”, but the player does not know that so you
have to tell him. For writing instructions use block say.

Now you can continue with writing the code for a rectangle. You
will use a similar procedure as when drawing a square. Use the loop when possible!

Same hints:

a. Vertex A has the same coordinates as before x: -80, y: -105.
b. All angles are 90°.
c. The distance between the vertex A and B is 150 steps and between the vertex

B and C is 75 steps.
Add instructions for switching to a new background.

[Task 3]

1) Here you will connect the vertices to the letter T.
2) Some hints:

a. Coordinates of the starting vertex are x: -56, y: -138.
b. The distances between vertices are 60, 185 and 180 steps.
c. All angles are 90°.

3) Add instructions for playing again from the beginning.

 26

[Additional tasks]

You can add additional tasks according to you wishes or follow the tasks below:

● Add a new background and draw some dots.
● Write a code that connects the dots. You can draw a background or you can use a

given one.

Drawing with a chalk:
https://snap.berkeley.edu/project?user=mateja&project=Drawing%20with%20a%20chalk%
20-%20Part

https://snap.berkeley.edu/project?user=mateja&project=Drawing%20with%20a%20chalk%20-%20Part
https://snap.berkeley.edu/project?user=mateja&project=Drawing%20with%20a%20chalk%20-%20Part

 27

Scenario 9 – Picking up trash and cleaning the park

1) Open the program Picking up trash and cleaning the park. The code for moving the
girl is already made. Sprites for waste (a bottle and a paper) and a trash bin are also
given.
You will create more sprites (waste) that a girl will have to pick up and dump into a
trash bin at the end.

2) Select the starting position for the girl and set the x and y coordinates. You can move
the trash bin if you want (trash bin will always be in the same position, so you do not
have to set the starting coordinates).
As always, write initial instructions.

3) In order to check if the girl picked up all the trash, we have to count how many items
has she picked up. To help with the counting, we will use a variable.

What is a variable?
A variable is like a box where we store some information. The name variable derived
from the fact that its value may vary during the implementation.
We will make a variable points and with points we will count how many items the girl
picked up.

How do we create a variable?

 We click on the orange block

Variables, then we select
Make a variable, write its
name and click OK.

IMPORTANT! The name of the variable should:
- make sense and name what the variable will represent – eg. points,

noOfTrash etc.
- not contain non-English characters (eg. č, š, ž etc.),
- not include spaces. If we want to name the variable number of trash, we

can name it number_of_trash, numberOfTrash or shorter no_of_trash or
noOfTrash etc.

When we make a variable,
the variable appears on the left.

 A check mark in front of a
variable indicates that the variable
name and value appear in the background.

 28

Since we have not picked up any trash at the beginning, the value of
the variable points should be 0. We set this with this code:

4) Now you will write a code for a bottle. When the girl touches the bottle, the bottle
will disappear.
Think about:
a) How can you check if the girl came to the bottle?
b) What happened to the bottle, when the girl touches it?
c) What happens with points?

Test if number of points increases correctly.
d) Hint: Why would you use the following command?

e) Test again, click on the green flag. What happens?

5) When a code for one bottle is finished, you can copy the sprite bottle.

Right click on the bottle and select duplicate.
A duplicated sprite appears somewhere in the
background. Move it somewhere inside the maze. Copy
the sprite bottle several times, so you will have more
trash in your maze.

6) Now you have to write a code for a sprite paper.

The code is the same as it was for the bottle, so you
can simply copy the entire code. Left click on the
entire code, drag it on the sprite paper and drop it.

Copy the other parts of the bottle code in the same way.

7) Repeat the step 5) and copy the sprite paper like you copied the bottle.

8) The last thing is a code for the trash.
When the girl comes to the trash bin, the trash bin will tell her if she collected all the
trash or not.

 29

[Additional tasks]

You can add additional tasks according to you wishes or follow the tasks below:

● Add another type of waste (e.g. bio-waste).
● The trash can says e.g. “You picked up X bottles, Y papers and Z watermelons”.
● If a player picks up all the trash, the trash can says: “Congratulations! You picked up

all the trash!”
● If a player does not pick up all the trash, the trash can tells him which trash has not

been picked up, e.g. “You did not pick up all the bottles. You did not pick up all the
watermelons.” and “Come back when you pick up all the trash”.

Picking up trash and cleaning the park:
https://snap.berkeley.edu/project?user=mateja&project=Picking%20up%20trash%20and%2
0cleaning%20the%20park%20-%20Part

https://snap.berkeley.edu/project?user=mateja&project=Picking%20up%20trash%20and%20cleaning%20the%20park%20-%20Part
https://snap.berkeley.edu/project?user=mateja&project=Picking%20up%20trash%20and%20cleaning%20the%20park%20-%20Part

 30

Scenario 10 – Feeding the cats

Task: Program the game in which the shelter keeper will repeatedly ask the player for the number of
cats she can feed in a certain room. The number depends on the number (2 to 10) and size (2 to 5) of
the bowls. For each room those two numbers have to be assigned randomly. The size of the bowl tells
how many cats can eat from it, for example if bowl size is 3 that means 3 cats can eat from it.
We also have to have a counter that will count the right answers. Create a game in which the player
will have to guess the right number of cats that we can feed in each room. After the activity give a
feedback about how many times the player answered correctly and how many times she was wrong.

The process of creating the game:

1. Open the template file:
https://snap.berkeley.edu/project?user=zapusek&project=cat_feeding_template

There is an image for the background and the main character - cat shelter keeper.

2. We want to count the correct answers. If we want to store a value in a program we have to

use a variable. We can access commands regarding variables in the “Variables” group. New

variable is created when we click on: .
Variables assign a name to a value, so when we make a new one, we have to name it first. It
is suggested that we use a mnemonic name, this means that we can tell what kind of value is
stored in a variable from its name. For counting correct answers we can choose the name
“correct_answers”.

The value of the variable can be set to or changed by some value. If we want to set the value

of the variable we use the block: . Everytime we set a value to a variable, the
previous value is overwritten.
If we want to change the current value by some other value, we have to use block:

. Current value of the variable will be changed by the value we specify in
a white space.

https://snap.berkeley.edu/project?user=zapusek&project=cat_feeding_template

 31

3. Now we will start to actually code the game. First think about how activities in each room will
actually be very similar, the same even. In each room we have to:

a. assign a random value for the number of bowls and for the bowl size.

In the “Operators” group we can find the block that returns the random value from

an interval that we can specify. For example: will return the
random number between 1 and 10.

We will need the values of the number and size of the bowls in each room stored for
later when we will have to calculate the right answer. This can be achieved by creating
new variables and assigning those values to them.

Create two variables:

1) for the number of bowls in each room
2) for the size of the bowl in each room

Assign them random values according to the specification of this game. Use the

blocks: and .

b. Player has to know which random values computer selected, so we have to inform

her. Use blocks: , and the values of the
variables that store the number and size of bowls: and
.
You can find references to variables in the “Variables” group:

c. Now we have to prompt the player to input her answer. If we want to get the player

input we have to use input block from “Sensing” group: .
When the player write her answer into input field it is stored in the “answer” variable:

.

d. Next we have to check if the player’s answer is correct or not. Think how you can
calculate the right answer from the number and size of the bowls. If we compare the
value stored in with the number of cats we can feed (we calculate this value),
we can find out if the answer is correct or not.
Calculate the correct number of cats we can feed in each room using these blocks:

, and .

i. if the answer is correct: congratulate the player and add one to the value of
the correct_answer variable.

ii. if the answer is wrong: give the appropriate feedback.

We can differentiate between exactly two possible situations with the use of
if-else block:

 32

Med dvema situacijama (pravilen ali napačen odgovor) ločimo z uporabo
bloka za pogojni stavek “če-sicer”.

If the answer will be correct it will be equal to the calculated value, otherwise

it won’t be. Complete the code using the block that checks equality:
.

4. We implemented the code for one room, but there are ten rooms in a shelter. We could

copy the above code ten times and place it sequentially but that would not be an optimal
way to do it. Instead of doing that we can use a loop that will repeat the same code ten
times. The most simple loop for achieving that is repeat [n] times loop:

5. When the game is over you have to provide the feedback: number of correct and wrong
answers. The number of correct answers is stored in a variable and the number of wrong
answers can be calculated. If we know, that player will input the number 10 times and we also
know how many times he answered correctly, we can find out how many times she was
wrong. Complete the game using these blocks:

6. Na koncu izpiši število pravilnih in napačnih odgovorov. Število pravilnih je shranjeno v
spremenljivki tocke. Napačne pa lahko izračunamo. Če vemo, da je možno zbrati največ deset
točk, prav tako pa kolikokrat je igralec odgovoril pravilno, lahko število napačnih odgovorov

izračunamo: , and .

7. You can upgrade the game using these suggestions:
a. Shelter keeper includes the number of each room in her question. For example:

“Guess the number of cats I can feed in room 5”.
b. If the player's answer is wrong, she tells her the correct number.
c. Instead of ten rooms, the room number is random or the player inputs the number of

rooms at the beginning of the game.
d. Add your own ideas and upgrade the game to your likings.

 33

Scenario 11 – Guessing the number of cats in a shelter

Task: Cat shelter keeper Martha wants you to guess the exact number of cats that she has in her
shelter. The number can be anywhere between 1 and 100. When the player types the number she
answers if current input number is less, more or equal to the right number of cats.

1. Open the template file:
https://snap.berkeley.edu/project?user=zapusek&project=cats_in_a_shelter_template

There is an image for the background and the main character - cat shelter keeper.

2. First we have to randomly choose a number of cats in a shelter. The number must be selected

from the interval from 1 to 100. We will need that value later in a game for comparing it to
the player’s answers, so it has to be stored in a variable.
Create a new variable number_of_cats and assign it a random value from 1 to 100. This
number will represent a number of cats in a shelter.

Use the blocks: and .

3. Think about: 1) which actions will be repeated in a game and 2) how many times we will have
to repeat those actions. Can we predict in advance how many guesses will the player have to
make in order to figure out the correct number?

4. The following actions will be repeated in a game:

a. Player will enter a number. We can get an input from a player with the use of

 block.

b. We have to check if the number is:
i. Greater,

Combine the blocks below to find out if the entered number is greater than
the value stored in a variable numbe_of_cats:

, , and .
ii. Smaller,

Combine the blocks below to find out if the entered number is greater than
the value stored in a variable numbe_of_cats:

, , and .
iii. Same?

To detect if the player answered correctly we will use a small “trick” that will
be explained in the next chapter.

https://snap.berkeley.edu/project?user=zapusek&project=cats_in_a_shelter_template

 34

5. How many times will the code from 4) repeat? Well..until the player won’t guess the right
number. Think about how we cannot predict how many tries a player will need to guess the
right number. In such situations where we have to repeatedly execute the same actions until
a sentinel event occurs (in our case, the sentinel event occurs when the correct number is
entered), we use a repeat until loop.

“Repeat until loop” will repeat all the blocks in its body until the condition in its head is true.
If the condition is evaluated as false it will go into another iteration. When the “repeat until
loop” exits, blocks that are placed below will be executed.

In our case we will have to ask a player to input her guess and compare that value to the value
stored in the number_of_cats variable. We will have to stop when the player’s input will be
equal to the number of cats, if not, we will have to do it again.

Define the condition for checking if the input is equal to the number of cats using these blocks:

, and .

6. Let’s summarize: What will happen if the entered number will be different than the number
of cats? Loop will go into its next iteration.

7. Let’s summarize: What will happen if the entered number will be equal to the number of cats?
The loop will stop and the blocks placed below the loop will be executed.

8. This is the “trick” we were talking about earlier and that enables us to detect the right answer
without checking the condition explicitly inside the loop.
Let’s see what will happen when the player enters the right number. The two conditions inside
the loop that check if the value if greater or smaller will not be satisfied and the loop will go
check the condition in its head. This condition will be true, so the loop wont go into the next
iteration and will stop executing. The program will start to execute the blocks placed below
the loop.

9. If we know that “repeat until loop” is behaving like this, we can use that knowledge to our

advantage. We can conclude that if the blocks placed below the loop are executing, the player
must have guessed the right number. Then we can congratulate the player.

10. In Snap! we can show or hide the value of the variable to the payer. This can be done by

clicking on the checkbox next to the variable name: .
Consider if it is good to have the value of the number_of_cats variable visible to the player?

11. You can upgrade the game using these suggestions:

a. Count the guesses.
b. In the beginning ask the player to enter her name and greet him. Use her name when

giving feedback or asking to input the next try.
c. Give feedback that will depend on the player's success. If the player guesses the

correct number in five or less tries, give her a cat as a reward. If she guess the correct
number on the first try, provide a special feedback..

d. Add your own ideas and upgrade the game to your likings.

 35

Scenario 12 – Catching healthy food

1) Open the program Catching healthy food:
https://snap.berkeley.edu/project?user=mateja&project=C4G12_Catching%20health
y%20food%20-%20Part.
A bakground and a sprite (Girl) is alerady given. You will create a game, where
healthy (+1 point) and unhealthy (-1 point) food will fall from the top. The player will
have to click on the healthy food and collect a certain number of points. The girl will
tell the initial instructions and then she will hide. The instructions have to tell that
the game continues by pressing the key »S«.

2) Add a food sprite. Choose one healthy sprite, eg. an apple.
a. Write a code for apple's movement. Think about the direction of movement.
b. To make a game more interesting, instead of move 2 steps use

.

3) Think: what will happen when the apple comes to the bottom of the screen?
What do the pictures below mean?

4) What do you need for counting points? Make it and set it properly (write a code on
the girl sprite).

5) How will you realize that the apple moves constantly?

Hint: The game ends when the player reaches e.g. 5 points.

6) When girl talks at the beginning, we want that the apple stays hidden. When the girl
reappears, the apple hides again.
Think: why do we have to hide an apple on when the green flag clicked?

7) What happens when we choose (click on) a healthy food – an apple? Think and write

the code.

8) The code for the apple is (almost) finished. Go back on writing the code for the girl.
The girl will reappear when the player reaches 5 points and say e.g.
»Congratulations, ...«. The program must constantly check if the player has reached
5 points. How will you do this?

Check – what does this block do and where will you put it?

9) When the player will play the game again, he will already know that he can skip
initial instructions by pressing the key »S«. This will cause confusion as the girl will

https://snap.berkeley.edu/project?user=mateja&project=C4G12_Catching%20healthy%20food%20-%20Part
https://snap.berkeley.edu/project?user=mateja&project=C4G12_Catching%20healthy%20food%20-%20Part

 36

still talk and the food will already fall.
You can prevent this by making a new variable (named e.g. start). At the beginning
you set the start's value to 0 (which means food does not appear). When the girl
ends giving instructions, you set the start's value to 1 (which means food can
appear).

To make this work, you have to add a block of code to the sprite apple. What do you
need to do?

10) In the last step you will duplicate the apple sprite few times to have more food.
Change the sprite's costume so you will have healthy and unhealthy food (e.g. also a
banana, a donut, a cake).

The codes of healthy and unhealthy food are different only in one thing. Which one?

[Additional tasks]
Add additional tasks according to your wishes or follow the tasks below:

• Change the game so that a bowl sprite is catching food.

• Add a new sprite (a bowl). Draw it, find it online or use attached picture/s of the bowl.

• Set the starting position of the bowl (e.g. at the bottom of the screen) and write a code
for the bowl’s movement (left and right, if you want also up and down). Food sprites
have to disappear and reappear at a random location by touching the bowl (and not on
mouse-clicking the food as before).

• Change the rules – let the game end when a player scores 20 points (he wins) or when
he picks up 3 unhealthy foods (he loses).

• Add more food sprites to make the game more interesting.

• Change the bowl costume when a player scores e.g. 5, 10, 15 points.

 37

Scenario 13 – Storytelling

1) Let's take a look at Alice1:
https://snap.berkeley.edu/project?user=ddureva&project=Alice_1

and Alice2 program together:
 https://snap.berkeley.edu/project?user=ddureva&project=Alice_2

2) We use broadcasting e.g. when we want that an event 2 happens after the event 1

ends.

E.g. at the beginning the
Rabbit starts telling the
story (event 2). When he
ends, he sends the message
Go to forest.

When Alice receives the message Go to forest, the
event 2 starts.

Shorter instructions for broadcast, receive and create messages

3) For broadcast and receive messages we have following commands:

4) Creating messages:

Right-click on block
broadcast and write
the name of the
message.

https://snap.berkeley.edu/project?user=ddureva&project=Alice_1
https://snap.berkeley.edu/project?user=ddureva&project=Alice_2

 38

Then click on the event block when I receive and choose the message.

For creating a story, you always need a plot (scenario). In the table Story plots/Scenarios a
scenario for the story is written and the second table Sprites provides a detailed scenario for
each sprite / background.

Continue the program Alice 2 and create a story!

Optionally, you can add some scenes and also change anything.

Story plots/Scenarios

Name Design Actions Notes

1. Start

The story starts with
the scene (When the
green flag is clicked)

Against this background, the Rabbit
introduces the story.

2. Forest

The scenery appears
when the Rabbit
rounds up his
introduction (A Go
to forest message
has been sent)

Against this background, Alice
appears positioned in the center of
the stage. She starts moving,
wondering "Where am I?". The sprite
gradually reduces its size 5 times by
10%. When it reaches the end of the
path (at a crossroads), the scene
changes to Meeting. (Alice sends
message -broadcast Meeting with
Cheshire Cat)

3. Meeti
ng

Appears when
Alice’s message
Meeting with
Cheshire Cat is
received.

Here Alice and the cat are part of the
background. To use Alice's sprite,
prior to the message, she is
positioned so that she covers her
image from the decor. The Cat sprite
appears at a later stage.
As the scene changes, the Rabbit
continues to tell the story.
Later a conversation takes place
between Alice and the Cheshire Cat.

 39

Sprites

Sprite Actions Background

At the Start:
Says: Hello! (For 2 sec.)
Says: Have you heard about Alice and her adventures in
Wonderland? (For 6 sec.)
Says: Now let’s see one of her stories! (for 6 sec.)
Sends the Go to forest message.

start

At the Start:
Hides from stage; at centre stage position and 100% size, ready to
be displayed against the new background.

start

At the Start
Hides from the stage; positioned at x: -74, y: 113 (Positions are
predetermined after the Cat sprite has been set on the Meeting
stage.)

start

Receives a Go to forest message:
The sprite shows on stage.
Repeated 5 times: waiting for 1 sec .; moving 5 steps; size
reduction (change by -10); wondering: Where am I?
Preparing for next decor: waiting 5 sec; restoring the sprite’s size
(100% change) and positioning at x: -187, y: -67
Sends Message: Meeting with Cheshire Cat.

forest

No action. Just becomes visible from previous decor.

forest

Receives the message: Meeting with Cheshire Cat.
Resizes to 80%
He says: "Alice stops at the crossroads and wonders were to go."
(for 10 seconds).
He says, "She saw the Cheshire Cat on the three." (for 8 sec.)
Sends a message Alice1

meeting

Receives the Alice1 message.
Moves to the front (This is necessary because the Cat appears
after her, which prevents Alice’s lines from appearing in a dialogue
box if she is not in the front layer).
She says: "Hi!" (for 2 sec.)
She says: "Would you tell me please, which way I ought to go from
here!" (for 10 seconds).
Sends a broadcast message to the Cat: Cat1.

meeting

 40

Receives the Cat1 message.
The sprite shows on stage.
It says: "That depends a good deal on WHERE you want to get to!"
(for 10 seconds).
Sends an Alice2 message.

meeting

Receives the Alice 2 message.
Says: …………………………………………………………………………
Sends a Cat2 message.

meeting

Receives the Cat2 message.
Says: …………………………………………………………………………
Sends a Rabbit1 message.

meeting

Receives the Rabbit1 message.
Says: “What’s the moral of the story?” (for 8 sec.)
Says: “To know which way to go, one has to determine his or her
goal first.”

meeting

 41

Scenario 14 – Improve the Climate

The air has been heavily polluted by the industry and needs to be cleaned. Program the game
so that the player will improve the air by planting trees.

1. First you have to open Improve the Climate program. It contains template of
backgrounds (industry and grass) and sprites (a pencil, a pine, an oak and sprite
named clear).

2. Next you have to program that the pencil will be positioned in the middle of screen
and that the industry will be in the background when the green flag is clicked.

3. Now you have to add the code that the pencil will draw a pine when the player
clicks it.

The following note:

● When the pine is clicked, it sends a message to the pencil to draw the pine.

TIP: Help yourself with the blocks and .

● The pencil draws a pine – you have to draw a green triangle and below it a
brown square. You will need maths skills here.

 TIP: Use the blocks in the Pencil tab.

● Once the pine is drawn, you have to lift the pencil and place it in a random
position.

4. Next you have to add the code for drawing oak in the same way as in Task 3. When

the player clicks in the sprite named oak, it is drawn to the screen. You have to draw
an oak as a green circle and a trunk as a brown square. You will also need math skills
here.

TIp: Help yourself with the steps in Task 3.

 42

5. Next you have to add the code that all the drawn trees are deleted when the player
clicks on the Clear sprite.

The following note:
● When the Clear sprite is clicked with the mouse, it sends a message to clear

all trees.

TIP: Help yourself with blocks from TASK 3.

● When the Pencil sprite receives a message, it deletes all drawn trees.

TIP: Help yourself with blocks and .

6. Next you have to add a new variable named Clean Air and add the code that the
player will earn 2 points for each drawn pine and 3 points for each drawn oak (the
oak contributes more to the purity of the air than the pine). When the player
reaches a certain points (eg 10), the air is no longer polluted.

The following note:
● At the beginning of the game, the Clear Air variable must be set to 0.

TIP: Help yourself with block .

● Each time the Pencil sprite receives a message for drawing pine, the Clear Air

variable must change by 2.

TIP: Help yourself with block .

● Each time the Pencil sprite receives a message for drawing oak, the Clear Air

variable must change by 3.

TIP: Help yourself with the block above.

● When the Clean Air variable is greater than e.g. 10, the Pencil sprite sends a

message to background to turn it into grass. At that point the air is not
polluted anymore.

TIP: Help yourself with blocks , , .

[ADDITIONAL TASK]
You can upgrade the game by adding animals that they appear when the air is not polluted
anymore.

WHEN YOU FINISH, SAVE THE PROGRAM!
Improve the Climate:
https://snap.berkeley.edu/project?user=tadeja&project=Improve%20the%20climate

https://snap.berkeley.edu/project?user=tadeja&project=Improve%20the%20climate

 43

Scenario 15 – Catch the mouse

There is a mouse in Nina's room. The cat named Muri is released into the room with the
intention of catching the mouse. Muri is unsuccessful in hunting. The mouse escapes several
times to the cat. How many times has Muri almost caught the mouse?

1. First you have to open Catch the mouse program. In it you find a template with
background – Nina's room.

2. Next you have to add a new sprites – a cat and a mouse.

3. The cat is moved by the player with the arrow keys. The player tries to catch the

mouse. Now you have to add the code that the cat is moved by the arrow keys (up,
down, left, right). Also you have to consider what happens if the cat is on edge.

TIP: Help yourself with the blocks

 .

4. The mouse runs around Nina's room. You have to program the mouse to move

randomly.

The following note:

● The mouse moves by a random number of steps.
● The mouse turns by a random number of degrees.
● The mouse bounces if it is on the edge.

TIP: Help yourself with the block .

5. Every time the cat catches a mouse, it escapes. Now you have to program that the
mouse hides and appears in a random location in the room when it touches the
cat.

TIP: Help yourself with the blocks from TASK 4 and with the blocks

 and .

 44

6. We wonder how many times a player catches the mouse. You have to add a counter
that it will count the number of times the cat touches the mouse.

The following note:

● You have to create a new variable named Result (you have to go to Variables and

click on New Variable button).
● No mouse is caught at the beginning of the game, so the Result variable must

be set to 0 (help yourself with block).
● Each time the cat catches (touches) the mouse the Result variable must be

increased by 1 (help yourself with the block).

7. The game ends after a certain amount of time (e. g. after 30 s). You have to add a
timer to determine the end of the game.

The following note:

● You have to add the timer (you can find it in the Sensing tab).
● After a while (eg 30 s) the mouse and the cat hide (help yourself with the block

).

● You have to reset the timer at the end of the game (help yourself with the block

).

8. Next you have to add a new sprite – a girl. She tells the score of the player how

many times she or he has caught the mouse.

TIP: Help yourself with the block .

[ADDITIONAL TASKS]
You can add any elements to the game.

9. For example, you can upgrade the game by adding the girl who is afraid of mice and
she jumps every time when she touches a mouse.

TIP: Help yourself with the blocks and .

10. For example, you can upgrade the game by adding the sound of the cat which it

plays when the cat caught the mouse.

TIP: Help yourself with the blocks and .

WHEN YOU FINISH, SAVE THE PROGRAM!

Catch the mouse:
https://snap.berkeley.edu/project?user=tadeja&project=Catch%20the%20mouse

https://snap.berkeley.edu/project?user=tadeja&project=Catch%20the%20mouse

 45

Scenario 16 – Buying food for a picnic

Instructions: Create a game where a player buys healthy and unhealthy products (food). The
game should include:

- Initial instructions, given by a sprite (girl).
- The amount of money a player has at the beginning.
- Healthy and unhealthy products and a price for each product.
- When mouse pointer hovers a food product, the product’s price shows.
- When mouse pointer hovers a girl, she says how much money is still available.

1) Open a new project, select a background and a sprite (e.g. a girl). The girl gives initial

instructions to the player.

2) You will need more variables. Think about why do
you need next variables:

a. budget,
b. healthy_food,
c. unhealthy_food,
d. »price_of_particular_food« - you can add

this later, when you will know which food
products will you have.

Set a starting value for each variable.

3) Add a food sprite, e.g. a watermelon.
a. The watermelon shows at the beginning. Set a price for this product.
b. When mouse pointer hovers the watermelon, the watermelon says its price.

E.g. Watermelon costs 4 EUR.
c. What happens when you click on the watermelon (and you want to buy it)?

Think:
i) In which case can the player buy the watermelon and in which

case he can not buy it?
ii) What happens with the variable budget, if the player buys the

watermelon?
iii) How can we count the bought products?
iv) What happens with watermelon?

4) You can duplicate the watermelon and change its costume, so you will have more

products on the shelf.
How will the watermelon and e.g. the cake code differ?

5) Create a sprite to end shopping (e.g. FINISH).

Clicking on this sprite, the sprite broadcasts a message for finishing with shopping.

6) The girl says e.g. You chose 2 healthy and 3 unhealthy products!

7) Add a code which will, when mouse pointer hovers a girl, say how much money is
still available.

 46

[Additional tasks]

Add additional tasks according to your wishes or follow the tasks below:

● Change the game so you can buy each food 3 times.
● Give more money to the player at the beginning.
● At the end the girl tells also how many products you bought. E.g. “You bought 2x

watermelon, 1x grapes, 2x fries”.

 47

Scenario 17 – Operations

You have to program the game with which the player solves simple mathematical operations.

1. First you have to open the Operations program. In it you find a program template
with background and sprites – the numbers.

2. Next you have to add the code that the backgrounds (mathematical operations) will

be randomly changed 10 times.

The following note:

● You have to add a new variable named Operation in which you will store the
mathematical operation - the background (you go to Variables tab and click on the

New Variable button).
● You have to randomly set the value of the Operation variable (help yourself

with the blocks and) .

● You have to switch background to the randomly selected mathematical
operation – another background (help yourself with the block

).

3. You have to add the code that it randomly change the number (the sprite). First you

have to create a new variable named Number. Then you have to add the code that
the number is changed, when the mathematical operation is changed.

You do this by sending a message using the block.

When the number receives a message (), the number is changed randomly
(similar to task 2).

4. You have to add the code that the player can enter the result.

TIP: Help yourself with the block .

5. Now you have to add code that you can check if the player has entered the correct
result.
The following note:

● You have to create a new variables named Correct and Incorrect to count
how many correct and incorrect answers the player has given.

● You have to check which mathematical operations is in progress.

TIP: Help yourself with the blocks and .

 48

● You have to verify that the player's answer is correct.

TIP: Help yourself with the blocks , , .

● If the player's answer is correct, you have to increase the Correct variable
by 1, otherwise you have to increase Incorrect variable by 1.

TIP: Help yourself with the blocks and .

6. Finally you have to add the code that let the player know how many points he has
scored. The following note:

● You have to send a message: sum the points.

TIP: Help yourself with the block .

● When the number receives the message, it calculates how many points the
player has scored. The points are calculated by subtracting the number of
incorrect answer from the number of correct answer.

TIP: Help yourself with the blocks and .

WHEN YOU FINISH, SAVE THE PROGRAM!

Operations: https://snap.berkeley.edu/project?user=ddureva&project=operations_half

https://snap.berkeley.edu/project?user=ddureva&project=operations_half

 49

Scenario 18 – Recycling
Robot Binny has noticed that there are pieces of paper and glass object on a playground and
that kids cannot play there. Because it wants to help kids and their parents to clean up the
playground, it brought two bins to sort the waste into: a green one for glass, and blue one for
paper waste. Program a game to teach kids to sort the waste into appropriate bin to sort and
collect the trash from the playground.

1. Open a file C4G18_Recycling_Part. In this file you will find robot Binny, two bins and
waste, that needs to be sorted. Make sure that the waste will be scattered on the

playground at the beginning of the game. You can use . To find out
where on the stage are the objects, you can check the checkboxes next to x and y
position for each object separately

and on stage you will see the value of x and y position of the object:

When you set the starting position, uncheck the boxes so that they will not interfere
with your work and play.

2. When green flag is clicked robot Binny, both bins and all the trash have to be shown.

3. Binny shall ask the player, what is her name, and give her instructions: the player has to
put the waste in appropriate bins, green for glass and blue for paper. When Binny ends
his instructions, it shall broadcast a message for the beginning of the game and hide
itself.

4. Determine for each piece of waste to which bin does it belong: if player drags it to
appropriate bin the piece is hidden, otherwise is says that it does not belong to that bin.
Checking shall start when the message for the beginning of the game is received.

5. Make a variable, that will count, how many pieces of waste have been successfully
disposed or how many still need to be collected – it is up to you to decide. Think when
the value of the variable should be displayed on the stage and when it should be hidden.
You show or hide it also during the game:

6. The game ends, when the player has correctly sorted all the waste. Think how to check if
all the waste was collected.

7. When all the pieces of waste are correctly disposed, Binny will show up, and
congratulate you for the finished task. Binny will address you by your name, that you
have written in the beginning, e.g. Anna, congratulations on cleaning the playground.
Now you can go and play.

Additional task: add another bin for plastics and plastic waste to the game

C4G18_Recycling_Part: https://snap.berkeley.edu/project?user=mateja&project=C4G18_Recycling_Part

 50

Scenario 19.1 – Play a Piano

1) Teacher showed you the program Play a Piano 1 and explained
how the Sound group commands can be used.

2) Divide into groups. Each group will create a game like Play a
Piano 1.

3) Open the pogram Play a Piano Half baked:
https://snap.berkeley.edu/project?user=ddureva&project=Play_a_Piano_Half_backed

4) Discuss about the game scenario and describe the game plan in the description sheet

(page 2).

Additional: you can add a condition for the dinosaur to dance while playing (the dinosaur has
several costumes in the pre-prepared file).

https://snap.berkeley.edu/project?user=ddureva&project=Play_a_Piano_Half_backed

 51

Describe your project for computer game
Title ..
Team members: ...

1. Describe game plot.

2. Sprites, Backgrounds, Variables (Describe: sprites – name, costumes, etc.; backgrounds; Variables
– name, purpose, area of activity – for all sprites, for current sprite (please write name of the
sprite if Variable is related only to one sprite)

3. Detailed plot

Sprite
(name
or
picture)

Events Duration

4. Used commands (blocks):

 52

Scenario 19.2 – Play a Piano

1) Open the program Play a piano:
https://snap.berkeley.edu/project?user=ifrankovic&project=Play%20Piano

 You will assemble the keys as you see in the picture above.

2) The key C is already in the right place.

a) Duplicate the key C.
b) Move it to the correct position.
c) Rename it.

3) Copy the black key. It the black key is hidden behind the white keys, use the code

.

4) Uncheck the »draggable« button, so the key sprites can not be moved while playing. Do
this for all sprites.

5) To play a note we will use those commands:

 and .

6) We will write a code for clicking on a sprite/key (when I am clicked) and for pressing a key
(when __ key pressed). Will the codes be the same? What will happen when you click on the
sprite/key or when you press a key on the keyboard?

7) By clicking the sprite violin key the background will change to background chords.

8) By clicking the sprite reset the background will change to background blank.

9) By clicking the sprite note the whole song will be played. Write a code that plays the whole
song. Use a loop where possible.

60 62 64 65 67 69 71

https://snap.berkeley.edu/project?user=ifrankovic&project=Play%20Piano

 53

[Additional tasks]
Add additional tasks according to your wishes or follow the tasks below:

• Duplicate the sprite Note (and change its position on the background) and write a
program for another song.

• Add a background with chords for the new song.

 54

Scenario 20 – Test
Abby would like to test classmate’s knowledge about Snap! She created a test with questions,
but she has lost the code for checking the correctness of the answers. Help her create a
program, which will change background before each question, and let Abby tell the possible
answers to her classmate at the same time. Abby will also count correct and wrong answers.

8. First you have to open C4G_20_test_en_tmp program, where you will find Abby, start
button, and the backgrounds you will need for the test. Abby first gives instructions to
her classmate, which are already written for you. Each correct answer brings 1 point,
while each wrong answer deducts a point from a total score.

9. Start button: First make sure, that the game will start, when the start button in pressed.
On click the button has to be hidden. How will you inform other characters that the
game has begun? What do you have to do with the start button on the beginning of the
program?

10. Changing stage background: when the game starts when background has to be changed
with the next one. The easiest way to do this is that Abby broadcasts a message to
change, and the stage changes costume to the next one when it receives this message.
Try it out!

11. Create 2 variables: one for correct and one for wrong answers

12. Seting questions: As the questions are written on the stage background, Abby has to ask
a question so that she tells the classmate what are the possible answers, e.g. You can
answer with yes or no

13. When classmate answers, Abby must tell him if the answer was correct or not. If it was
she also adds a point for correct answer, otherwise she adds a point to wrong answers

14. After each question the background is changed to the next one. Do you still know how
to do it?

15. At the end of the test, Abby has to tell her classmate how many answers were correct,
how many were wrong and what is his score (= number of correct – number of wrong
answers)

16. Based on the total score Abby tells her classmate if he successfully passed the test or if
he has to retake it

Additional task 1: Abby can change appearance during the game

Additional task 2: add your own questions. The do not need to be written on the background
- Abby can tell them to the classmate

Template: https://snap.berkeley.edu/project?user=spelac&project=C4G_20_test_en_tmp

https://snap.berkeley.edu/project?user=spelac&project=C4G_20_test_en_tmp

 55

Scenario 21 – Simplified PacMan

Task: Program a game of simplified Pacman. The main character (pacman) moves around the labyrinth
and collects stars. In the beginning there is one star on the random position, when pacman collects it,
new star appears in a new random location inside the labyrinth. Pacman is chased by a ghost who is
randomly moving. The game is over when the player collects 20 stars or if pacman touches the ghost.

1. Open the template file:
https://snap.berkeley.edu/project?user=zapusek&project=pacman_template

Inside you can find an image of the pacman, red ghost, star and background that represents
a labyrinth:

2. First we have to program the movement of the pacman. Player can control its movement with

arrow keys. We have to consider that pacman can not move through the walls.

We are going to code the movement using multiple blocks. We
will define the appropriate keys.

At each step we will have to turn the pacman to the corresponding direction and then make

a move. We can turn an object using block, and select the direction
using the drop down menu. We don’t have to type in the exact angles of directions because
Snap! helps us by naming them.

Pacman cannot move arbitrarily, because he is limited by walls. Walls are painted black, and
the legal paths are painted in blue. This can be used in order to implement such movement.
If pacman is on blue he can move, but if he touches the black color, he has to stop. Each step
must be combined with this condition.

Code the movement on the blue area of the labyrinth using these blocks:

, , , and

.

https://snap.berkeley.edu/project?user=zapusek&project=pacman_template

 56

If we find out that he touches the black color, we know he touched the wall. In this case we
have to move him back in an opposite direction, so he doesn’t get stuck on the wall.

Positive values inside block will move the object forward, negative values
will result in moving the object backwards.

 Add another if block to check if pacman is touching the black color. In that case we move him
 5 steps in an opposite direction.

3. Next we want to code the behavior of the star. In a simplified pacman game there is only one

star at the time. When the player collects it, a new star appears in a random location. For each
star player gets one point, when she has a total of 20 points the game ends.

In the game there will be a total of 20 stars. We are going to implement stars as clones of the
original star object.

We use clones in situations where we want to use several instances of the original object.

New clone is created with the block. In a drop down menu we select
the object we want to clone.

Now we have to click on a star and code what happens when the clone from the original star

is created. This is done using a block.

When a new instance of the star starts as a clone it has to move on a random position on a
screen. The default background height and width in Snap! is from -140 to 140 pixels. If we
assign a random value between those two numbers for x an y position of clone, we achieve

the random placement of the star. Use combination of blocks: and

.

The next problem that arises is when the computer selects such numbers from the interval
that the star is placed on a wall and pacman can’t get to it.

We know that the wall is represented by a black color, we can use that to check if a star is
placed on a wall or not. If this is true we can make another clone and delete this one. This will
be repeated until the clone will be placed in a legal location. Code this using these blocks:

, , and .

Checking if the pacman touched the star could be programmed within the pacman, or in the
clone code. Because we want to introduce the idea of sending the messages, we will make it
inside a clone.

 57

Player can move the pacman freely around the labyrinth, so we have to check if he touched
the clone in a forever loop. To detect if the object touched another object we can use the

block: and from the drop down menu select the other object.

When the pacman collects the clone the player will be awarded one point. Let's implement
this by setting a point counter variable inside a pacman. When the clone and pacman collide,
the clone will send a message to the pacman, so he will know that he has to increment the
point counter.

Click on a pacman and create a new variable points for counting points. Set it to zero, because
the player doesn't have any points in the beginning of the game.

In Snap! objects can send each other messages in order to notify them that something has

happened. This is done with the block: . When the message is broadcasted,
all the objects on a scene receive it. In each object we can decide what will be its response. If
we don’t program anything, nothing will happen.

We create a new message by clicking on a small arrow inside the block’s input field and select
“new”.

Then we have to name a message. We want to choose a mnemonic name, so the meaning of
the message will be recognized from its name.

Complete the code of the star clone in a way that it will constantly check if the clone has
collided with the pacman. When this happens, it should send a message add_points. After
sending a message, the clone must send a command to create a new clone and delete itself.
To program this functionality use those blocks:

, , and .

Let’s see how we can react to received message in the other object. In the “Control” group

we have an event block that starts its execution when a specified
message is received. We can select a specific message using a dropdown menu.

In a pacman code, program the incrementation of the point counter, when the message is

received by using these blocks: and .

Here we can also code the end game condition. If we increment points by 1 and the total score
is equal to 20, the game is over. Code this functionality using these blocks:

 58

, , and .

4. Now we have to program a ghost. The ghost must move randomly throughout the labyrinth,
it must not go beyond the wall, but must bounce off and continue in a random direction. If he
touches the pacman, the game is over.

Let us consider how can we make a ghost move in a random direction after touching the
wall. He can move in the following directions: left, right, up and down.

Using a we can turn the object. We can choose the desired direction
by entering the angle of the turn:

● 0 degrees = UP,
● 180 degrees = DOWN,
● 90 degrees = RIGHT,
● 270 degrees = LEFT.

We want to find a way in which a point in direction block would be randomly set to one of
those values: 0, 90, 180 or 270. Problem is that in Snap! we can get a random value from an
interval not from a list of values. If we study these numbers, we can notice that all are
multiples of the number 90, because: 0*90 = 0, 1*90 = 90, 2*90 = 180 and 3*90 = 270. We can

get a random number from interval 0 to 3 with the use of block, if
we multiply this randomly selected number with 90, we get one of those numbers: 0, 90, 180,
270. This is exactly what we want!

The movement of the ghost and testing if it has touched the wall must take place throughout
the game, until the player reaches 20 points or the ghost touches the pacman. We already
programmed the first option that ends the game now let’s take care of the second.

The exit condition for moving the ghost is when the ghost collides with the pacman. If we use
the repeat until loop we can set the condition to when it touches the pacman. Until this is not
true, the ghost will move around, when he will hit the pacman, the loop will stop and blocks
placed after the loop will be executed.

The ghost movement is quite simple. In every iteration of the loop he must move by 1 step in
a given direction.

We can test if the ghost touched the wall with the sensing color block. Walls are black and
similar as we did with pacman, we can repeatedly test if the ghost is maybe touching the black
color. If this occurs, we have to move it 1 step backwards (so it doesn’t get stuck on the wall)
and change direction randomly as described above.

The loop will stop when the condition in its head will be true. This will happen when a ghost
collides with pacman. We have to provide feedback and end the game.
Code this functionality using these blocks:

, , , , ,

, and .

	Creative Commons Attribution-ShareAlike 4.0
	International Public License (CC BY-SA 4.0)
	Scenario 1 - Introduction to Snap! interface
	Task 1: Create a new sprite
	Task 2: Create a stage background

	Scenario 2 - Time to bring your sprite to life
	Barking

	Scenario 3 – Moving around the stage
	Scenario 4 – Changing costumes and turning
	Scenario 5 – Sounds of the farm
	Scenario 6 – Chameleon’s summer vacation
	Scenario 7 – Helping Prince and Princess to find their animals
	Scenario 8 – Drawing with a chalk
	Scenario 9 – Picking up trash and cleaning the park
	Scenario 10 – Feeding the cats
	Scenario 11 – Guessing the number of cats in a shelter
	Scenario 12 – Catching healthy food
	Scenario 13 – Storytelling
	Scenario 14 – Improve the Climate
	Scenario 15 – Catch the mouse
	Scenario 16 – Buying food for a picnic
	Scenario 17 – Operations
	Scenario 18 – Recycling
	Scenario 19.1 – Play a Piano
	Scenario 19.2 – Play a Piano
	Scenario 20 – Test
	Scenario 21 – Simplified PacMan

